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VIIP Proposed Pathophysiology 

3.  Elevated ICP & fluid shift transmitted to the eye 
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Orthostatic stress and spaceflight 

• Orthostatic intolerance (OI) observed 
after 9-hr (1962) & 34-hr (1963) 
Mercury flights 

• Gemini (1962) planned gliding 
landing, pilots seated upright, after 
up to 14 days in orbit 
o Would OI prevent pilots from 

flaring before touchdown? 
o Gemini program defaulted to water 

landing with no terminal piloting 
(1964) 
– Reduced concerns during parachute descent 

(only 4 min seated at 0.8 Gz) 
– But prolonged upright seated posture while 

afloat awaiting retrieval 
o In the end, OI not an operational problem: all 

astronauts who were hoisted to helicopter in 
horse-collar sling tolerated it without incident 
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How to reverse headward fluid 
shifting—using gravity 

Technique Description 
Gravity 

dependent? 
Advantages Disadvantages 

Spaceflight 
relevance? 

Active 
standing 

Free standing Yes Convenient 
Skeletal muscle and 

vestibular involvement; 
falls possible 

Clinical pre/post-
flight OI assessment 

Passive 
standing 

Standing while 
leaning against 

wall 
Yes Convenient; falls less likely 

Skeletal muscle,  vestibular 
involvement 

Shuttle clinical OI 
assessment, 

pre/post-flight 

Head-up tilt 
Tilt table, litter, 

etc. 
Yes Passivity 

Requires equipment; 
residual skeletal muscle, 
vestibular involvement 

Mercury, Gemini, 
Apollo, Shuttle 

clinical assessment, 
pre/post-flight 
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Technique Description 
Gravity 

dependent? 
Advantages Disadvantages 

Spaceflight 
relevance? 

Thigh-cuff 
inflation 

Occlusion cuffs No 
Passivity; no skeletal muscle 
or vestibular involvement; 

simple equipment 

Requires equipment; small 
volume of sequestration 

Possible OI 
countermeasure. 

Gemini 5, 7; “Braslet” 
on Mir, ISS 

Cuirass 
External 

compression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

simple equipment 

Requires equipment; 
pressure transmission 

effects 

Upper body 
positive 
pressure 

Decompression of 
upper body 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

insensitive to seals 

Enclosed head limits 
access, mobility, 

performance 

Possible OI 
countermeasure 

(Evaluated at NASA 
Ames) 

Lower body 
negative 
pressure 

Decompression of 
abdomen and legs 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

maximal volume shift 

Requires equipment 
including 1 seal; pressure 

transmission effects 

Salyuts, Skylab, Mir, 
Shuttle, ISS (Russian 

segment) 

Leg negative 
pressure 

Decompression up 
to thigh 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

partial volume shift 

Requires equipment 
including  2 leg seals; small 

volume of sequestration 

Abdominal 
negative 
pressure 

Decompression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

partial volume shift 

Requires equipment 
including 3 seals, or AGS-

in-LBNP; pressure 
transmission effects 

How to reverse headward fluid shift—
without gravity 
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Technique Description 
Gravity 

dependent? 
Advantages Disadvantages 

Spaceflight 
relevance? 

Thigh-cuff 
inflation 

Occlusion cuffs No 

Passivity; no skeletal 
muscle or vestibular 
involvement; simple 

equipment 

Requires equipment; 
small volume of 
sequestration 

Possible OI 
countermeasure. 

Gemini 5, 7; 
“Braslet” on Mir, ISS 

Cuirass 
External 

compression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

simple equipment 

Requires equipment; 
pressure transmission 

effects 

Upper body 
positive 
pressure 

Decompression of 
upper body 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

insensitive to seals 

Enclosed head limits 
access, mobility, 

performance 

Possible OI 
countermeasure 

(Evaluated at NASA 
Ames) 

Lower body 
negative 
pressure 

Decompression of 
abdomen and legs 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

maximal volume shift 

Requires equipment 
including 1 seal; pressure 

transmission effects 

Salyuts, Skylab, Mir, 
Shuttle, ISS (Russian 

segment) 

Leg negative 
pressure 

Decompression up 
to thigh 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

partial volume shift 

Requires equipment 
including  2 leg seals; small 

volume of sequestration 

Abdominal 
negative 
pressure 

Decompression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

partial volume shift 

Requires equipment 
including 3 seals, or AGS-

in-LBNP; pressure 
transmission effects 

How to reverse headward fluid shift—
without gravity 
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Technique Description 
Gravity 

dependent? 
Advantages Disadvantages 

Spaceflight 
relevance? 

Thigh-cuff 
inflation 

Occlusion cuffs No 
Passivity; no skeletal muscle 
or vestibular involvement; 

simple equipment 

Requires equipment; small 
volume of sequestration 

Possible OI 
countermeasure. 

Gemini 5, 7; “Braslet” 
on Mir, ISS 

Cuirass 
External 

compression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

simple equipment 

Requires equipment; 
pressure transmission 

effects 

Upper body 
positive 
pressure 

Decompression 
of upper body 

No 

Passivity; no skeletal 
muscle or vestibular 

involvement; insensitive to 
seals 

Enclosed head limits 
access, mobility, 

performance 

Possible OI 
countermeasure 

(Evaluated at NASA 
Ames) 

Lower body 
negative 
pressure 

Decompression of 
abdomen and legs 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

maximal volume shift 

Requires equipment 
including 1 seal; pressure 

transmission effects 

Salyuts, Skylab, Mir, 
Shuttle, ISS (Russian 

segment) 

Leg negative 
pressure 

Decompression up 
to thigh 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

partial volume shift 

Requires equipment 
including  2 leg seals; small 

volume of sequestration 

Abdominal 
negative 
pressure 

Decompression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

partial volume shift 

Requires equipment 
including 3 seals, or AGS-

in-LBNP; pressure 
transmission effects 

How to reverse headward fluid shift—
without gravity 
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Technique Description 
Gravity 

dependent? 
Advantages Disadvantages 

Spaceflight 
relevance? 

Thigh-cuff 
inflation 

Occlusion cuffs No 
Passivity; no skeletal muscle 
or vestibular involvement; 

simple equipment 

Requires equipment; small 
volume of sequestration 

Possible OI 
countermeasure. 

Gemini 5, 7; “Braslet” 
on Mir, ISS 

Cuirass 
External 

compression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

simple equipment 

Requires equipment; 
pressure transmission 

effects 

Upper body 
positive 
pressure 

Decompression of 
upper body 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

insensitive to seals 

Enclosed head limits 
access, mobility, 

performance 

Possible OI 
countermeasure 

(Evaluated at NASA 
Ames) 

Lower body 
negative 
pressure 

Decompression 
of abdomen and 

legs 
No 

Passivity; no skeletal 
muscle or vestibular 

involvement; maximal 
volume shift 

Requires equipment 
including 1 seal; pressure 

transmission effects 

Salyuts, Skylab, Mir, 
Shuttle, ISS 

(Russian segment) 

Leg negative 
pressure 

Decompression up 
to thigh 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

partial volume shift 

Requires equipment 
including  2 leg seals; small 

volume of sequestration 

Abdominal 
negative 
pressure 

Decompression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

partial volume shift 

Requires equipment 
including 3 seals, or AGS-

in-LBNP; pressure 
transmission effects 

How to reverse headward fluid shift—
without gravity 
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Technique Description 
Gravity 

dependent? 
Advantages Disadvantages 

Spaceflight 
relevance? 

Thigh-cuff 
inflation 

Occlusion cuffs No 
Passivity; no skeletal muscle 
or vestibular involvement; 

simple equipment 

Requires equipment; small 
volume of sequestration 

Possible OI 
countermeasure. 

Gemini 5, 7; “Braslet” 
on Mir, ISS 

Cuirass 
External 

compression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

simple equipment 

Requires equipment; 
pressure transmission 

effects 

Upper body 
positive 
pressure 

Decompression of 
upper body 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

insensitive to seals 

Enclosed head limits 
access, mobility, 

performance 

Possible OI 
countermeasure 

(Evaluated at NASA 
Ames) 

Lower body 
negative 
pressure 

Decompression of 
abdomen and legs 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

maximal volume shift 

Requires equipment 
including 1 seal; pressure 

transmission effects 

Salyuts, Skylab, Mir, 
Shuttle, ISS (Russian 

segment) 

Leg negative 
pressure 

Decompression 
up to thigh 

No 

Passivity; no skeletal 
muscle or vestibular 
involvement; partial 

volume shift 

Requires equipment 
including  2 leg seals; 

small volume of 
sequestration 

Abdominal 
negative 
pressure 

Decompression of 
abdomen 

No 
Passivity; no skeletal muscle 
or vestibular involvement; 

partial volume shift 

Requires equipment 
including 3 seals, or AGS-

in-LBNP; pressure 
transmission effects 

How to reverse headward fluid shift—
without gravity 
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Physics and physiology of LBNP 

PLBNPD ≈ 230 m (770 ft) 

above sea level 

PLBNPD ≈ 600 m (1970 ft) 

above sea level 

ΔΡ 

ΔΡ 

ΔΡ 

} Blood volume shift ≈ 0.6 l 
f(ΔΡ, time @ ΔΡ)  

Sources: Rowell, 1986; Buckey, 2006; Smith, 1990.  

ΔΡ = Pambient - PLBNPD 

“LBNP … 

provides a 

non-gravity 

dependent 

way to shift 

fluid from the 

upper to lower 

body.” 

Buckey, 2006. 

ΔΡ load 

ΔΡ load 

ΔΡ load 

ΔΡ load ≈ ΔΡ x area of opening 
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FGRF ≈ 0 

FGRF ≈ 0.4 BW 

FGRF ≈ BW 



Foundation of LBNP 

Date Location Event Author Notes 

1550 BCE Egypt 

Cupping 1000 BCE China 

400 BCE Greece Hippocrates 
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Dharmananda, Subhuti. Cupping. 
http://www.itmonline.org/arts/cupping.htm, March 1999 

(accessed 26 June 2014). 

http://www.itmonline.org/arts/cupping.htm


Lower (whole) body negative pressure 
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Iron Lung 

St. Louis Science Center, 2006 



Brown, 1966 (Greenfield, 1963) 

27 June 2014 www.nasa.gov/exploration/humanresearch 14 



Stevens and Lamb, 1965 
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Vol. 16, Oct. 1965 



Progress of LBNP 

Date Location Event Author Notes 

1550 BCE Egypt 

Cupping 1000 BCE China 

400 BCE Greece Hippocrates 

1964 Brooks AFB LBNP D Graveline 
Original developer; 
conceived with E Wood  
(inspired by O Gazenko) 

1965 
1966  

UCSF LBNP 
A Greenfield, G Plassaras 

E Brown 
Abstract 
Paper 

1965 Brooks AFB LBNP P Stevens & L Lamb Paper 
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Progress of LBNP 

Date Location Event Author Notes 

1550 BCE Egypt 

Cupping 1000 BCE China 

400 BCE Greece Hippocrates 

1964 Brooks AFB LBNP D Graveline 
Original developer; 
conceived with E Wood  
(inspired by O Gazenko) 

1963 
1966  

UCSF LBNP 
A Greenfield, G Plassaras 

E Brown 
Abstracts 
Paper 

1965 Brooks AFB LBNP P Stevens & L Lamb Paper 

1966 Brooks AFB In-flight LBNP For MOL, Apollo (1967) 

1970 
IBMP, 

Moscow 
In-flight LBNP O Gazenko For Salyut (1971) 

1970 
NASA, 

Houston 
In-flight LBNP G Hoffler For AAP, Skylab (1973) 

27 June 2014 www.nasa.gov/exploration/humanresearch 17 



Nomenclature 

• “Exposure of the Body Below the Iliac Crests 
to Sub-atmospheric Pressure”  

• Lower Body Negative Pressure (LBNP) 

- No such thing as “negative” pressure 

• Lower Body Decompression 

- Counterpart to lower body compression 
garments 

• Lower Body Suction 
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Spaceflight application 

1966 1967 

Early applicability 

…possibly just a placeholder. 

Early applicability, but implementation slightly 
inappropriate… 
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NASA photograph S-66-33890 NASA photograph S-66-7370 

Collapsible LBNPDs for space flight US in-flight LBNP capability—MOL (USAF) 

McDonnell-Douglas, 1968 

Initiated Dec. 1963 
Authorized Aug. 1965 
Cancelled June 1969 

Planned:  
5 missions,  

2 pilots, 30 days 
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US in-flight LBNP capability—Skylab  
Skylab (1973-1974) 
• ~4-day intervals 
• Greater stress in-flight 

than pre-flight 
• Loss of OI < 4-6 days 
• Predicted early post-

flight OI 
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Orthostatic stress and spaceflight redux 

Space Shuttle Orbiter 
• Approved 1972 
• All crewmembers seated upright 

during re-entry, landing 
- Piloting required 
- >1 Gz for up to 10 min. 
- After up to 10+ days in 

weightlessness 
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US in-flight LBNP capability: Space Shuttle 

Year Mission Research 

Orthostatic Intolerance 

Application 
Monitoring 

Countermeasure 

Eval. Demo. 

1990 STS-32 X X 
Extended 
Duration 
Orbiter 
Medical 
Project 

(EDOMP): 
15-30-day 
missions 

under 
consideration 

1991 
STS-43 X X 

STS-44 X X X 

1992 

STS-50 USML-1 X X 

STS-47 SL-J X X 

STS-52 X X X 

1994 

STS-58 (SLS-2) X X 

STS-64 X X 

STS-65 IML-2 X X 

1995 STS-71 SL-Mir X Mir, 3 months 

1998 STS-90 Neurolab X 
Neural 

CV control 
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US in-flight LBNP capability: Space Shuttle 
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Early notional concept: Airlock LBNP 

Charles, unpublished, 1985  

Early notional concept 
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Early notional concept: Airlock LBNP 

Ola Eiken, Acta Physiol Scand v131 suppl 566, 1987  

Charles, unpublished, 1985  

Early notional concept 



US in-flight LBNP capability: Neurolab 
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Buckey and Homick, 2003 

Ertl et al., 2003 



Soviet, Russian in-flight LBNP capability 

BETEP (Veter) 
Salyut, 1971 

2004 2008 2012 

Chibis 
Salyut 4 (1975-1977) 
Salyut 5 (1976-1977) 
Salyut 6 (1977-1981) 
Salyut 7 (1982-1986) 

Mir (1986-1999) 
ISS (2000-2012) 

 
Chibis-M 

ISS (since 2012) 
 

Primarily used for 
end-of-mission 

rehabilitation, and 
occasional research 

Chibis-M 
microsatellite 

Nov. 2011 
Progress M-13M 

Chibis 
(lapwing) 
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Chinese in-flight LBNP capability 
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From Watenpaugh, et al.,1999  



Imitation ? Flattery! (Plus spaceflight!)  
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Watenpaugh 

patent, 1994 

Watenpaugh, 

Hargens et al., 1999 

Yang et al.,2003 



LBNP ≠ LBNP (even in weightlessness) 

FGRF 

“FGRF” 

ΔΡ load on feet 
• Skeletal muscle involvement 
• Muscle pump activation 
• Counteracts fluid sequestration 

ΔΡ load on buttocks or crotch 
• No leg skeletal muscle involvement 
• No muscle pump activation 

ΔΡ load 

ΔΡ load 

versus 
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LBNP combined with exercise 
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Wattenpaugh et al., 1999 

Self-generated LBNP (no 

pumps, no internal 

exercise device) 

Charles, 1985 

(unpublished)  

Cooper 

& Ord, 

1968  

DLR, 2013  
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Hargens et al., 1991 

Treadmill-in-LBNP 

(requires pump, 

exercise device) 

GRC, 2002 

LBNP combined with exercise 



Pestov & Asyamolov, 1972  Lategola & Trent, 1979 
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Seated LBNP 
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Immersion LBNP 
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Pestov & 
Asyamolov, 1972  



LBNP plus Head-up Tilt 
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DLR, Köln, 2013 

“AustroMars” 

Helmut 

Hinghoffer-

Szalkay, 

Graz, Austria 



• Fluid compartmentalization measures: 
– Total Body Water (D2O) 
– Extracellular Fluid (NaBr) 
– Intracellular Fluid (Calculated) 
– Plasma Volume (CO rebreathing) 
– Interstitial Fluid Volume (Calculated) 

• Imaging measures: 
– Head & Neck ultrasound (Carotid, jugular, vertebral, cerebral) 
– Ocular ultrasound (Ophthalmic, retinal, ONSD) 
– Ocular Structure (OCT) 
– Cardiovascular and portal vein ultrasound 
– Tissue thickness of calcaneous, tibia, forehead and eyelid 
– Magnetic Resonance Imaging (upright, supine, HDT) for 

vascular and ventricular dimensions, CSF production and 
flow, and ICP estimation 

• Other physiological measures: 
– Intracranial Pressure (CCFP/DPOAE) 
– Intraocular Pressure (Tonopen/Icare ) 
– Blood Pressure / Heart Rate / TPR 

• Preflight/Inflight/Postflight 

• With and without fluid shift manipulation 
 (HDT/HUT/LBNP) and breathing maneuvers 

Application to VIIP: Fluid shifts 

PIs: Michael Stenger, Alan Hargens, Scott Dulchavsky, Valery Bogomolov 
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Application to VIIP 
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STS-32, 1990: first 
known in-flight IOP 
measurement during 
LBNP. Data not yet 
accessed. 



Conclusion  

• LBNP is applicable to 
investigations of gravity-
dependent physiological 
mechanisms in 
weightlessness 

• LBNP has demonstrated 
value as a gravity-
surrogate or gravity-
replacement for in-flight 
rehabilitation 
- Cost-benefit calculation 
 Significant cost  

• LBNP has flexibility to 
meet clinical and 
scientific requirements 
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ASMA 2014 Abstract 

• Program ID number: 080 
• Title: STANDING WITHOUT GRAVITY: THE USE OF LOWER BODY NEGATIVE PRESSURE FOR RESEARCH AND 

RECONDITIONING IN SPACEFLIGHT 
• Insight into VIIP (Visual Impairment Intracranial Pressure), May 12, 2014 02:00 PM Indigo E 

 
• J.B. Charles, M.R. Campbell, M.B. Stenger, S.M.C. Lee 
• Weightlessness during spaceflight causes cephalad redistribution of intravascular and extravascular fluid,  provoking 

cardiovascular and autonomic nervous system adaptations. The resulting functional state is appropriate for 
weightlessness but can result in orthostatic hypotension and intolerance during and after return to a persistent 
acceleration or gravitational environment. Lower body negative pressure (LBNP) applies subambient air pressure to the 
legs and lower abdomen inside a volume sealed at the waist, and decompression by 40-50 mmHg reverses the 
spaceflight-induced cephalad shift. LBNP has been used both to test the state of cardiovascular system during 
spaceflight and as a countermeasure by all space-faring nations.   

• Two configurations have thus far been used in spaceflight since the first LBNP flew on the first Soviet Salyut station in 
1971. The Soviet and Russian configuration, used in four Salyut stations, the Mir space station and the Russian segment 
of the International Space Station, has no saddle to support the body so during decompression the feet press against 
the bottom of the collapsible chamber which shortens and applies force against the feet proportional to the 
decompression level. Thus, activation of the skeletal musculature partially counteracts vascular and venous pooling in 
the enclosed body segments, stimulating the orthostatic compensatory mechanisms as they would be standing on 
Earth. In the American configuration, used aboard Skylab and the Space Shuttle, a saddle supported the astronaut so 
the feet did not contact the bottom of the chamber, and vascular engorgement was not countered by muscular 
contraction. This minimized skeletal muscle involvement, unmasked vascular compensatory mechanisms for research 
purposes, and allowed measurements of changes in leg volume and muscle sympathetic nerve activity. Both variants 
have demonstrated research and therapeutic value in appropriately designed protocols.   

• LBNP continues to be used for research and countermeasures on ISS, and future versions may explore the value of 
exercise during LBNP as an integrated countermeasure. This paper will review the history and development of LBNP for 
spaceflight research and therapeutic purposes.  

• (2243 characters, 319 words) 
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